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I. INTRODUCTION 

1.1 Background  

Recently, microgrid systems have shown promise to 

integrate multiple distributed systems based on renewable 

energy sources. Due to the arbitrary properties of energy 

sources such as wind energy and solar energy, the electrical 

properties of renewable energy sources are arbitrary, 

irregular and unreliable. It is attractive to integrate local 

production on the grid, but there are many existing and 

renewable energy sources. Planning Challenges, In addition, 

most electricity generation depends on the weather, so 

energy storage systems and/or emergency power-generation 

systems are an important part of small networks. Proper 

design and design is the first step in combined power. 

Optimization technology is a reasonable investment in 

energy management systems, providing economical and 

stable use of resources.  
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Extensive research in the published literature shows that 

mathematical methods (such as evolutionary algorithms, 

inference, and non-classical algorithms) give better results 

than other traditional methods. By combining smart 

optimization algorithms the look like machine learning with 

adaptive technologies, optimization problems can be sought 

from several angles. 

1.2 Machine Learning 

Prediction | The various subfields were established during 

the forecast period. The problem of estimating energy 

demand can be a nonlinear time series. As the prediction 

continues, different subdomains are created. Due to some 

complex factors, the energy collection estimation problem 

can be an invisible estimation problem because it requires 

several aggregations and a high level of accuracy. To solve 

this problem, various time series and machine learning 

methods are presented in the literature. With developing 

neural network prediction methods, reinforcement learning 

technology is expected to increase the accuracy of random 

prediction and provide bi-directional communication 

between neurons.  

Based on data, we have examined and expanded forecast 

monitoring methods and improved the use of energy 

estimation methods in uncertain structures. *Supervised 

energy prediction | We propose three new deep learning 

methods for supervised energy prediction. Overall, the thesis 

details the mathematical derivation of the proposed learning 

methods and a comparison with state-ofthe-art methods for 

energy prediction, such as artificial neural networks, 

recurrent neural networks, support vector machine, hidden 

Markov models and persistence method. 

 The methods are tested under different time horizons 

using various resolutions. Two datasets are used to validate 

our proposed methods at the building level, while another 

dataset collected to use to analyze the prediction accuracy at 

the aggregated level. Optimization | In the second part the 

potential benefits of strategic optimization at the building 

and aggregated level are proposed. The study is based on the 

assumption that optimal resource allocation for end-user 

models based on the daily profile of intelligent electrical 

devices is easily suitable for future energy models and 

variable sources such as wind and sun and meets these 

requirements. You can use important information to 

encourage comments. And requirements management 

software. Expect that you can solve the cost-saving problem 

to get a real-time response.  
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Besides this, there are major benefits of energy 

management system by machine learning for microgrid 

devices listed below: Increasing the ability to control energy 

production and transmission in modern methods. Provide 

voltage support along the line. Provides interactive power 

compensation in the speakers and when receiving the end of 

the line. Enhanced dynamic stability and stable state of 

system connections. An improvement in the power factor. 

1.3.1 Microgrid: 

   Technically speaking, a microgrid is a low voltage 

distribution network located underneath the distribution 

station via a point of common coupling (PCC). Microgrids 

have many components, including Distributed Generators 

(DG), Distributed Energy Storage Device (DES), and 

controlled loads. The unique properties and dynamics of 

microgrid components pose unique challenges for the 

management and operation of networks. Depending on the 

type and degree of intrusion of the distributed energy 

resources (DER) and DES nodes into a particular microgrid, 

the required energy management plan can differ 

significantly from existing power supply systems. A typical 

microgrid works in two modes..[1] 

  In terms of power and energy, the network 

increasingly uses microgrid, but there is no single definition 

of how microgrid are identified and how to differentiate 

between microgrid. Unlike other conditions, such as open or 

microgrid, as the microgrid system becomes more complex 

parts of our global power systems, the need for general 

settings becomes increasingly important. In addition, we can 

divide microgrid into four main categories, depending on 

different criteria. The two most important criteria are: (1) 

when a microgrid is connected to a large network and (2) the 

output power that can transmit another important difference 

is the type and size of distribution in microgrids. However, 

many options are available, making it difficult to agree on 

criteria. 

 

Figure 1 structureof Microgrid 

  Scales can be an important criterion. However, this is an 

ongoing process and there are many ways to consider it. 

Different standards can clearly distinguish between different 

size systems. 

Finally, control is a potential difference and is manifested: 

In the past, standard keyboard products have been used to 

connect and disconnect large networks. Parallel Control 

Generator In various locations most of the remaining 

controls relate to pregnancy management. This is a very 

important question. However, with many options available, 

classification is difficult. The difference between 

dimensions (large or small) and network connections 

(connected or remote) leads to four types of microgrids that 

require further classification. 

     Microgrids connected to large networks such as 

military bases and large campus applications connected to 

traditional public services. However, they can operate in 

island mode. They have many generators and can have 

many complex deployments and controls on a microgrid. 

    A microgrid has only one generator set connected to the 

network. Usually, microgrids are in developing countries 

where networks are unreliable and often use unnecessary 

generators. It is not clearly distributed across the network. 

There may be other boot controls and other controls, but 

they start manually. Many people may not think about these 

microgrids. However, there are many other microgrids. 

   The smallest and most remote microgrid (e.g., island 

providers) has many generators and they are widely used. It 

can detect the smallest microgrid usually not the smallest 

generator. Elevator adapters should not be available to sell 

small items that can DC distributes. Billing innovations and 

payment methods can increase the workload of this 

microgrid.[2] 

1.3.2 Energy Management System:  

     If there is more than one power source in the microgrid, 

the EMS must effectively control the flow of energy through 

the system. Ideally, EMS wants to maximize the 

consumption of renewable energy, minimize ESS loads, 

reduce energy costs, ensure the stability and reliability of the 

system, and distribute the loads in all situations.[3]. EMS 

can be implemented using a conventional rule-based 

strategy or an intelligent strategy, which is usually based on 

optimization algorithms. However, EMS, which works well 

for certain micro-networks, might not be optimized for other 

configurations. In addition, it is widely recognized that EMS 

can control the flow of energy within the system, depending 

on the objectives and criteria set by the users. This section 

explains some of the suggested EMS methods for different 

microgrid configurations[4]. 

   Renewable energy microgrid is an effective method for 

the supply and demand ratio (SDR), especially when it has 

an energy store [5]. The main mission of EMS, which is 

composite as an ingredient of the Energy Storage System 

(ESS), is to improve ESS performance taking into account 

system limitations (including power consumption). "Taking 

into account many factors such as energy, energy 

consumption, and production as well as economic costs, 

network stability, battery status, or a combination of these 

goals." The term "economic cost" refers to production, 

including conversion, storage, import and export, total 

freight and energy costs, all energy consumption, and 

demand for a microgrid.[6]. The most widely accepted 

methods for successful EMS work with such objectives are 

rule-based regulation [7] and mathematical control based on 

the optimization associated with the model[5]. 

II. RESULT AND DESICCATION  

For RBF-ANN, a fuzzy controller of the Sugeno type of 

first order with linear rules was used, the block diagram of 

which is shown in Fig.   
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 The network representation of the fuzzy logic system 

shows that the backpropagation can configure parameters in 

membership functions and output rules. RBF inputs are high 

speed and light barrier inputs that pass through a wash filter 

to remove existing DC biases. The first escalation block 

assigns the actual input to certain membership functions. 

The second scale block is used to compare the output of the 

fuzzy output system with the actual output required. The 

fuzzy inference system consists of a fuzzification unit, a 

control table, and a tank unit, and a surgeon-type 

defuzzification unit. 

 

∑ K

K

K

x

x

∆ω

∆P

μ w w

f

μ

u
3

i

i
iAi

1

1

2

2

Bi

e

1

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. .

.

.

Layer1 Layer2 Layer3 Layer4 Layer5  

Fig.  2 structure of sugeno-fuzzy with RBF-ANN 

The fuzzy control design is based on an understanding of the 

functional and control effects obtained from experience. The 

rules are created using the acceleration power of the 

generator (Pacc = power of the mechanical axis (Pm)), the 

power of the electric generator (Pe) and the speed deviation 

(Δω) as control variables. 

It is difficult to measure Pm and sum. Due to the slow 

reluctance of the controller (regarding the response to 

excitation), Pm is assumed to be a constant from one sample 

to the next,  

Therefore: ΔPm = Pm - Pmo is assumed to be zero. While 

ΔPe = Pe – Peo 

You can switch from sample to sample. Pmo and Peo are the 

stationary values of Pm and Pe and Pmo = Peo, respectively. 

Pacc-Pm-Pe ≈ -ΔPe is used in developing the control 

function. Every fuzzy if - then first-order rule of Takage and 

the surgeon [12]: 

IF X1 is Ai and X2 is Bi THEN Ui = Pi Xi + qi X2 + 

r1  

X1, X2 are input variables (Δω, ΔPe) and Ai, Bi are 

language variables, Ui shows the ith rule, and {pi, qi, ri} is 

the resulting set of parameters. The node functions in each 

layer are of the same type. The function is described below: 

 

Fig.  3 Structure of  ANN  

Layer 1: Each node in this level works as a Gaussian 

membership.  

  
              

 
 

 
   

  
   

 
   
   

 
 

   (7) 

Xi is the input for point i, Ai is the linguistic name assigned 

to this node, and {ai, bi} is the Gaussian form of the MF 

parameters. y1i indicates the maximum degree to which this 

entry belongs to the linguistic description of Ai. with a 

maximum value of 1 and a minimum value of 0. When the 

values of these parameters change, the functions in Gussion 

form the forms of the functions of the membership. All 

functions that can be continuously distinguished, eg B. 

trapezoidal or triangular membership functions, are also 

capable candidates for node functions in this layer. 

Layer 2: Every node on this level offers the possibility to 

remove the rules. The nodes therefore perform a fuzzy 

operation AND. 

Layer 3: The nodes at this stage determine the normalized 

gravity of rule: 

  
     

  

   
 
   

       (8) 

Level 4: The product of the node in this layer is a sequential 

influence of weighted aspect of the subdue control flux: 

  
                           (9) 

Level 5: As for all incoming the yield signals, a 

hub in this layer computes the total output signals: 

  
                 

 
    (10) 

The training potential of the FLC was built up. To achieve 

the desired I/O assignment. These parameters are updated 

according to the training data and the gradient-based 

training method described below. 

If the training data set has P inputs and the output layer has a 

node, measure the errors of the pth input of the training data: 

    
 

 
       

       (11) 

Here yp is the pth component of the searched vector, and ypL 

is the pth component of the actual output vector. For each 

training information, a direct run is performed and then, 

from the output level, repetition is used to calculate 

(∂E_p)/(∂y_p) for all internal nodes. For the playback node: 
   

   
            

     (12) 

For the internal nodes in layer k: 

   

     
    

   

     
       

     
   

     
                                

    (13) 

If yki, p is the node output in the set of the kth level with k 

points, and k1 is the number of nodes on the level (k + 1). 

Assume that α is the network parameter specified for the 

adjustment: 
   

  
     

   

            
   

        (14) 

Where S is the set of nodes whose output depends on α. The 

goal is to minimize the common mistake. E = ∑Ep General 

learning rule: 
  

  
   

   

  

 
      (15) 

            
  

  
              (16) 

The symbol β is represented as a pulse coefficient and Δα (t-

1) is the change of α in the last step. An adaptive network is 

viewed as the superset of a multi-layer, high-performance 

neural network with controlled learning skills. The RBF-

ANN network's directional nodes decide which nodes are 

connected. 
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 Each nod has a specific function, and this function varies 

from node to node. The general I/O function determines the 

choice of each node to use based on the adaptive network 

achieved. RBF has adaptive parameters determined by the 

learning algorithm and must be updated to achieve the 

desired I/O assignment. Like ANN with a controlled 

learning algorithm, the adaptive network learning rule is 

based on gradient descent. 

 

Fig. 4 A scheme of the framework of formed RBF-ANN 

The block diagram formed of RBF-ANN is shown in Fig. . 

The grid is provided in Neural Network Toolbox for 

Matlab® Release 9.0.0.341360 R2016a, which contains 

several functions in RBF-ANN, which are quite algorithms 

Reliable and easy to use learning and modeling. 

Performance graphs, regressions, and model errors were 

used to detail the quality of the ANN model. 

 

Fig.  1 RBF-ANN Training Plot 

Fig.  1 shows an RBF-ANN performance graph showing 

how to mean squared error (MSE) is minimized during 

network training. The figure shows that the MSE of the 

training data decreases continuously during the training with 

no signs of excessive or inadequate adjustment. The best 

model performance was observed in the last 268th epoch of 

the training iteration cycle, with the corresponding final 

MSE being approximately 8.176 x 10
-7

, which was lower 

than the target MSE equal to 1 x 10
6
, indicating that the best 

training goal-setting function was matched. 

    
 

 
       

    
      (17) 

Where    is target values, tanδ(T,f) is loss tangent and   
  is 

the network  response to frequency (f) and temperature (T). 

 

Fig.  2 Comparison of learning objectives with the 

learning outcomes of the network. 

Moreover,  

(a) Linear regression plot for training results. 

(b) Linear regression plot for validation results. 

(C) Linear regression plot used to evaluate results. 

III. DATA PRACTICALLY CONNECTED IN 

SMART GRID BASED NEURAL NETWORK: 

In the original data of this configuration can, we obtained at 

the kaggle website for area zone connected with main 

energy network and supporting a few auxiliary renewable 

sources to provide the network for basic forecasting value 

{Görgel, 2015 #95}. The forecasting load can be better 

correlation snice, the first and perhaps slowest step in 

developing a neural network is data preprocessing. 

Converting and extracting meaningful information from raw 

data takes a lot of time and, sometimes, a special data 

processing tool. This process can take up to eight-tenths of 

the entire design and implementation task . Preprocessing 

means transforming data to make it easier for the network to 

learn I/O relationships. The preprocessing can include 

mathematical operations such as normalization, 

classification, and statistical operations such as correlation 

and asymmetry. The main goal is to create a file that 

contains several input examples. If you are familiar with the 

application, you can collect data. For example, in a short-

term load forecast, a load diagram always depends on past 

and future load and temperature data. Therefore, the input 

data file should contain the most correlated data on past 

temperatures and loads appropriately and format. 

 
(a) 

 

(b) 

 

(c) tanδ(-) output 

Fig.  3 the training target simulated with comparison 

output training 
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Fig.  3 (a-c) shows a comparison of the validation objectives 

with the validation results documenting the excellent 

interpolation capabilities of the model. A comparison of test 

outcomes and test results close is shown in Fig.  4 a-c. This 

shows that the RBF-ANN model analyzed doesn't only have 

wonderful definition and interpolation capabilities but also 

very good forecasting skills. Documentation of superior 

model interpolation capabilities is shown in Fig.  3 a-c. A 

similar comparison with the test objectives and results is 

shown in Fig.  4 a-c, That demonstrates the RBF-ANN 

model analyzed. 

 

(a) 

 

 

(b) 

 

(c) 

Fig.  4 The validation targets with simulation output 

points 

Training, validation, and testing of a modified network 

seemed to have reduced the number of hidden neurons in the 

approximately of ideal model as well as the training time, 

i.e. about 18 percent and 23 percent conformable. 

Nonetheless, for the training and testing data, the linear 

correlation coefficient R has not changed although its value 

for the test data has increased. Consequently, the optimized 

RBF-ANN model has a slightly higher computing efficiency 

compared to other models, but this does not affect the 

overall model error, which remains at the same level, in 

practice. 

 

 

(a) 

 

 

(b) 

 

 

(c)  

Fig.  5 The testing targets with outputs simulation 

In this experiment, we develop a typical new neural 

network-based radial basic function for the reaction and 

damping characteristics of the PLC of PID control systems 

over the entire temperature range of their lifetime, and 

comprehensive energy production for errors in total energy 

consumption. Changes in the coefficient of accumulation, 

the coefficient of loss and losing shadow with temperature 

and frequency were simulated using a well-trained neural 

network model with a good radial base with a Gaussian 

radial base function that depends on the layer neurons 

hidden and linear transformation and neural output function. 

Excellent compatibility of data and experimental models, 

including all observed relaxation transitions, was found 

across the range of observed temperatures and frequencies. 

The functional radial basis function of the neural network 

has been confirmed to be an powerful technical intelligence 

tool for flexible computing to effectively predict the viscous 

behavior of thermoplastic elastomeric systems at close range 

based on experimental results to reduce errors. 
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Training plot 

 

Validation Error Plot 

 

Testing Error Plot 

Fig.  6 Error Plot Network Data 

Table 1 Optimal ANN parameters, Training and 

network Validation results, and RBF-ANN model tests. 

 Data 

Division 

Sample MSE R Intercept 

Training 0.92 1108 7.961X10-7 1 5X10-7 

Validation 0.18 177 - 0.99985 3.1X10-4 

Testing 0.999 361 - 0.99999 3.8X105 

 

Fig.  7 Enhancement level of  energy after applied RBF-

ANN  

IV. CONCLUSION 

The machine learning module contains several instructions 

for improvement our system always uses the latest trained 

model to make its predictions. Operators must now decide 

when to retrain the model if they notice a drop in 

performance. We are developing a dynamic online 

algorithm that selects optimal or quasi-optimal models based 

on recent results from competing models. This next-

generation ML engine aims to automate the system and 

eliminate assumptions that may affect performance. In 

addition, this can enable an interesting process of knowledge 

discovery as we learn to refer to the environment and system 

states with optimal model properties. 

Besides, we frisk using our ML method to classify the root 

causes of failures. The neural network algorithm's first pass 

assesses each function individually for its ability to predict 

outages across the entire collection of feeder training data. 

We find that if these features are grouped into general 

categories (electrical characteristics, transformer tension, 

cable type, etc.), the top-ranked feature categories from the 

first PLC pass are successful leading indicators of 

corresponding actual causes of failure, with a lead time of 

about 6 days. For example, in our study, we see a rise in 

AVR test related features and an increase in it about a week 

before we see a corresponding rise in actual burnout-

induced feeder failures. Further analysis of the relationship 

between ML-identified attributes and actual causes may lead 

to further improvements in device reliability and fault 

management processes. 

A related question of forecasting that occurs with regard to 

our cooperation with the smart grid is to make quantitative 

predictions about the time-feeder fails and the corresponding 

components in the system. A combination of machine 

learning and statistical approaches like big data and real-

time analysis can solve this complex problem. While we 

currently do not concentrate on this area of study, it is a part 

of our long-term study plans. 
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